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The Fe(ll)- andaKG!-dependent oxygenases are a functionally
and mechanistically diverse family of enzymes that catalyze
numerous biologically important reactiofi$. They activate oxygen
at a mononuclear non-heme Fe(ll) center, which is in most cases

facially coordinated by a (Hig)Asp/Glu) triad? to couple the BogT | ‘0_1%

decarboxylation 0&tKG to the oxidation of their substrates. In most

cases, substrate oxidation entails hydroxylation of an unactivated

carbon center. The key intermediate of the catalytic cycle is a Fe- e e

(IV) —oxo intermediate, which abstracts a hydrogen atom from the 2 0 2 6 4 0 4 8
VELOCITY (mm/s) VELOCITY (mm/s)

substraté=1° Recently, a subclass of these enzymes capable of _
halogenating aliphatic carbon centers was identifietf These Figure 1. The 4.2-K Mssbauer spectra of a sample of the Cyfegll)-

j - - - . oKG-L-Aba-S-CytC2-Br~ complex that was reacted with,@or 2 s. The
reactions occur during biosynthesis of various halogenated naturalleft panel shows the zero-field spectrum. The contribution of the reactant

products. Aminp af:ids thiogsterified to the phosphopantetheinyl complex (129) is shown in green. The remainder can be simulated with
group of the thiolation domain serve as substrates for the haloge-two quadrupole doublets representing the Fe(IV) intermediates with
nases. In addition to their catalysis of chlorination reactions, parameters given in the text. The right panel is the 8-T spectrum. The solid

romination h I n e dK insight into th line is a spin-Hamiltonian simulation that assumes two high-spin Fe(IV)
bro h a_ ° fafh aég (S)ee dObSteh\}'é;d €y Insig c; eth sites § = 2, D = 12.5 cm}, E/D = 0.05) and uses the following
mechanism of thext(s-dependent halogenases came irom the parameters:0 = 0.23 mm/s, AEq = —0.81 mm/s,y = —0.5, A/lgnfn =
crystal structure of the halogenase SyrB2 frétseudomonas  (-18.0,—18.0,—31.0) T (62%) and = 0.31 mm/SAEq = —1.06 mm/s,
syringae®® The structure of the resting enzyme revealed a halogen = —0.5, A/gySn = (—18.0,—18.0,—31.0) T (18%).
E)Br Er ch gganld to Fhe I(rjon ﬁenter alt :h(; 5|tehnormally OlcchUpleﬁ Scheme 1 . Proposed Mechanisms for Halogenation (R =

y the carboxylate ligand. This result led to the proposal that the (cp,),coo-; X = Halogen; R'H = T Domain-Bound Amino Acid)
reaction may proceed via a variant of the canonical mechanism of o R ' .
the aKG-dependent dioxygenases (Scheme 1). Key steps of the H” . on ® HO R\X
mechanism are €H cleavage by a hateFe(lV)—oxo intermediate, R 0""---F1‘--""”"’+—02> Reo jh_‘,_.\ms

. . — 1O~ —re

followed by rebound of the halide atom to the substrate radical. oo | ™% T 8 | X
We recently studied the chlorination reactionLeAba tethered to His His His His
the thiolation domain CytC2,-Aba-S-CytC2, by the halogenase
CytC3 from Streptomyce¥ The C-H-cleaving intermediate

— REO_]‘F = Rypo—F

for the two Fe(1V) intermediates of CytC3 detected in the presence
of chloride rather than bromide, in which case the two species are

comrr)]rlseshtwohhlgh-slpln Fe(IV) gomplg;:ebs n %qumb;um.hHerg, present in approximately equal amounts. By contrast, the species
we show that the analogous reaction with bromide under otherwise i, smajier isomer shift predominates by3.7/1 in the case of

identit_:al copditions also yields an intermediate state comprising the bromo complexes.
two high-spin Fe(lV) complexes, and we use freegaench Fe
K-edge X-ray absorption spectroscopy to demonstrate that the
intermediate possesses a-Bte(IV)—oxo group, validating the
ligation of halogen to iron at this stage of the catalytic cycle.
Mdossbauer spectra of a sample of the Cy#egll)-aKG-L-Aba-
S-CytC2-Br~ complex that was reacted with,@r 2 s'” are shown
in Figure 1 as hashed marks. The zero-field spectrum can be
simulated as a superposition of the experimental spectrum of the
reactant complex (12%, green) and two quadrupole doublets with
parameters typical of high-spin Fe(IV}i = 0.23 mm/s|AEq| =
0.81 mm/s (68%, blue) and = 0.31 mm/s,|AEg| = 1.06 mm/s
(18%, red). These parameters are almost identical to those observe

The 8-T spectrum reveals that the Fe(lV) intermediates are in
the high-spin configuration, as was observed for all other Fe(lV)
intermediates that have thus far been detected in the mononuclear
non-heme-iron enzymég%16.18The spectrum was simulated under
the assumption of slow relaxation with the spin Hamiltonian
given in Supporting Information (SI) and the parameters given in
the legend to Figure 1. Because the hyperfine tensors of related
Fe(lV) intermediates are almost identicAligySn = (—18, —18,
—31) T192this parameter was fixed for the analysis. With this
assumption, the axial zero-field splitting parameté&, was

etermined from the spectrum&42.5 cnt?, which is in the range
pical of high-spin Fe(IV) intermediaté§16.1°
t Harvard Medical School. _ The high edge energy qf the XANES spt_actrum qf the Fe(lV)
# Department of Biochemistry and Molecular Biology, The Pennsylvania State intermediate, shown in Figure 2, is consistent with the 86%
University. Fe(IV): 14% Fe(ll) reaction mixture (see Sl). In addition, the area

§ Department of Chemistry, The Pennsylvania State University. . N AR .
Il College of Charleston. of the intermediate’s 1s> 3d transition is substantially enhanced
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